An Inequality for Doubly Stochastic Matrices *
نویسنده
چکیده
Interrelated inequalities involving doubly stochastic matrices are presented. For example, if B is an n by n doubly stochasti c matrix, x any nonnega tive vector and y = Bx, the n XIX,· •• ,x" :0:::; YIY" •• y ... Also, if A is an n by n nonnegotive matrix and D and E are positive diagonal matrices such that B = DAE is doubly s tochasti c, the n det DE ;:::: p(A) ... , where p (A) is the Perron· Frobenius eigenvalue of A. The relationship between these two inequalities is exhibited.
منابع مشابه
Some results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملUnharnessing the power of Schrijver's permanental inequality
Let A ∈ Ωn be doubly-stochastic n × n matrix. Alexander Schrijver proved in 1998 the following remarkable inequality per(Ã) ≥ ∏ 1≤i,j≤n (1−A(i, j)); Ã(i, j) =: A(i, j)(1−A(i, j)), 1 ≤ i, j ≤ n (1) We prove in this paper the following generalization (or just clever reformulation) of (1): For all pairs of n × n matrices (P,Q), where P is nonnegative and Q is doublystochastic log(per(P )) ≥ ∑ 1≤i,...
متن کاملVan der Waerden/Schrijver-Valiant like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for all
Let p be a homogeneous polynomial of degree n in n variables, p(z1, . . . , zn) = p(Z), Z ∈ C. We call such a polynomial p H-Stable if p(z1, . . . , zn) 6= 0 provided the real parts Re(zi) > 0, 1 ≤ i ≤ n. This notion from Control Theory is closely related to the notion of Hyperbolicity used intensively in the PDE theory. The main theorem in this paper states that if p(x1, . . . , xn) is a homog...
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملUnleashing the power of Schrijver's permanental inequality with the help of the Bethe Approximation
Let A ∈ Ωn be doubly-stochastic n × n matrix. Alexander Schrijver proved in 1998 the following remarkable inequality per(Ã) ≥ ∏ 1≤i,j≤n (1−A(i, j)); Ã(i, j) =: A(i, j)(1−A(i, j)), 1 ≤ i, j ≤ n (1) We prove in this paper the following generalization (or just clever reformulation) of (1): For all pairs of n × n matrices (P,Q), where P is nonnegative and Q is doublystochastic log(per(P )) ≥ ∑ 1≤i,...
متن کامل